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ABSTRACT

A new discretization for the elastic–viscous–plastic (EVP) sea ice dynamics model incorporates metric terms
to account for grid curvature effects in curvilinear coordinate systems. A fundamental property of the viscous–
plastic ice rheology that is invariant under changes of coordinate system is utilized; namely, the work done by
internal forces, to derive an energy dissipative discretization of the divergence of the stress tensor that includes
metric terms. Comparisons of simulations using an older EVP numerical model with the new formulation highlight
the effect of the metric terms, which can be significant when ice deformation is allowed to affect the ice strength.

1. Introduction

Sea ice dynamics models (Hibler 1979; Flato and
Hibler 1992; Hunke and Dukowicz 1997, for example)
are typically formulated and applied in Cartesian co-
ordinates for simplicity, and therefore neglect metric
terms (terms due to grid curvature). In reality, however,
these models exist on a spherical manifold and are pref-
erably applied in curvilinear coordinates, where metric
terms exist and may be important. Recently general or-
thogonal grids in which pole singularities are moved
smoothly into nearby land masses have gained in pop-
ularity for use in global climate simulations. On such
grids converging meridians at the poles are not a serious
problem for ocean and sea ice models because the pole
is outside the solution domain. However, metric terms
can be large because of the rapidly varying grid in the
vicinity of the poles, and model discretizations should
take them into account. The inclusion of metric terms
is a nontrivial algebraic excercise; the objective of this
paper is to incorporate metric terms in the elastic–vis-
cous–plastic (EVP) model (Hunke and Dukowicz 1997).

Metric terms arise in two ways in a sea ice dynamics
model. They arise in the formulation of the strain rate
and in the representation of the stress divergence. The
EVP model from the outset derived the stress divergence
by a variational method based on the internal work of
the sea ice rheology. Since the internal work is a scalar
quantity, independent of the manifold or coordinate sys-
tem used, the stress divergence forces so derived au-
tomatically include metric terms. An important addi-
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tional benefit of this method when used to obtain a
discretization is that it inherently preserves the dissi-
pative nature of the viscous–plastic ice rheology. Thus,
the only source of metric term error in the EVP model
is the approximation used in specifying the strain rate.

In this paper we remove this source of error by spe-
cifically including metric terms in the representation of
the strain rate. In general we follow the methodology
introduced in Dukowicz and Baumgardner (2002) by
making use of a bilinear representation of velocity and
stress in each grid cell. This improves the accuracy of
the discretization and eliminates the possibility of com-
putational modes.

While the formulation presented later holds for gen-
eral orthogonal, curvilinear coordinates on a sphere, we
present simulation results and comparisons for two spe-
cific displaced pole grids, shown in Fig. 1. The 100 3
116 ‘‘Gx3’’ mesh shown in Fig. 1a covers the globe
from 788S to 908N. The Southern Hemisphere grid is a
regular latitude–longitude mesh, with its equator lying
atop the physical equator and the South Pole at 908S.
The grid’s northern pole lies in Greenland, and the mesh
size at mid and high latitudes is approximately 38, with
the latitudinal resolution higher near the equator. The
grid shown in Fig. 1b, termed the Gx1 grid, is geo-
metrically identical to the Gx3 grid, but with 320 3
384 nodes, it features approximately 18 resolution. De-
tails regarding displaced pole grids such as these can
be found in Smith et al. (1995).

Although the simulations described later were per-
formed on these global grids, we will focus only on
results in the Northern Hemisphere. Southern Hemi-
sphere results are less striking because the mesh is more
uniform, with land boundaries extending further from
the pole.
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FIG. 1. (a) 100 3 116 Gx3 global grid, (b) 320 3 384 Gx1 global grid, for which only the Arctic is shown.

2. Mathematical formulations

a. General framework

We begin by describing the EVP model equations and
the variational method in a form independent of a co-
ordinate system, before considering them in curvilinear
coordinates. Following Dukowicz and Baumgardner
(2002), we introduce the divergence, DD, and the hor-
izontal tension and shearing strain rates, DT and DS,
respectively, as

D 5 ė 1 ė D 5 ė 2 ė D 5 2ė ,D 11 22 T 11 22 S 12

where 11, 22, and 12 are the components of a sym-ė ė ė
metric strain rate tensor.

In the viscous–plastic (VP; Hibler 1979) and EVP
models, an elliptical yield curve characterizes the ice
rheology. Letting s1 5 s11 1 s22 and s2 5 s11 2 s22,
where sij represents the internal stress tensor of the ice,
the EVP model incorporates the constitutive law in the
time-dependent equations

1 ]s s P1 11 1 5 D , (1)DE ]t 2z 2z

1 ]s s2 21 5 D , (2)TE ]t 2h

1 ]s s 112 121 5 D , (3)SE ]t 2h 2

where the symbols are defined in appendix A. Here,

P P
z 5 , h 5 , (4)

22D 2e D

1/2
1

2 2 2D 5 D 1 (D 1 D ) , (5)D T S2[ ]e

and P is the ice strength that depends on the particular
parameterization used. The VP model is recovered at
steady state:

s 5 2zD 2 P, (6)1 D

s 5 2hD , (7)2 T

s 5 hD . (8)12 S

Equations (1)–(3) as well as (6)–(8) describe a nonlinear
constitutive law that relates the internal stress tensor to
the rates of strain. Note that the constitutive law pre-
sumes that D ± 0. When the ice is rigid and rates of
strain are zero, D 5 0 and the viscosities h and z would
be infinite; in that case the VP and EVP models must
both employ a regularization method. The VP model
simply limits the viscosities (Hibler 1979), while the
EVP model makes use of elastic waves to regularize the
singularity (Hunke and Dukowicz 1997; Hunke 2001).

Both EVP and VP models utilize the vertically in-
tegrated momentum equations

]u
m 5 F 1 t , (9)1 1]t

]y
m 5 F 1 t . (10)2 2]t

Equations (9) and (10) determine the ice velocity based
on the internal ice forces, F1 and F2, and the surface
forcing, t1 and t2. Surface forcing terms include wind
stress, ocean stress, tilt of the ocean surface and a Cor-
iolis term, as described in Hibler (1979) and Hunke and
Dukowicz (1997). The two components of the internal
stress force, F1 and F2, are given in Cartesian coordi-
nates as the stress divergence:
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]s ]s11 12F 5 1 , (11)1 ]x ]y

]s ]s12 22F 5 1 . (12)2 ]x ]y

These expressions are much more complex in general
orthogonal curvilinear coordinates. Our main objective
in this paper is to derive a consistent discretization of
these forces that fully incorporates all metric terms.

Given the rates of strain ij and the internal stressesė
sij, the total rate of internal work over an area A is given
by the negative of

D 5 (s ė 1 2s ė 1 s ė ) dA.E 11 11 12 12 22 22

At steady state (or for the VP model), the stresses are
given by a constitutive law, Eqs. (4)–(8), and

1 1
D 5 s D 1 s D 1 s D dAE 1 D 2 T 12 S[ ]2 2

1
5 P(D 2 D ) dA $ 0. (13)E D2

In this case, D is the positive definite dissipation rate,
indicating that the system dissipates energy. Note that
for the EVP model, D is not just the dissipation rate but
also contains a contribution from stored elastic energy.

This dissipation of energy is a fundamental property
of the visco-plastic rheology. It is important to preserve
this property in the discretization such that the discrete
system dissipates energy in the same manner as the
continuous system.

b. Transformation to curvilinear coordinates

Assume that u and y represent velocity components
in an orthogonal, curvilinear coordinate system along
nondimensional coordinates j1 and j2 with scale factors
h1 and h2, respectively. Using formulas provided in
Batchelor (1967), we find

h ] u h ] y1 2D 5 2ė 5 1 , (14)S 12 1 2 1 2h ]j h h ]j h2 2 1 1 1 2

h ] u h ] y2 1D 5 ė 2 ė 5 2 , (15)T 11 22 1 2 1 2h ]j h h ]j h1 1 2 2 2 1

1 ] ]
D 5 ė 1 ė 5 (h u) 1 (h y) . (16)D 11 22 2 1[ ]h h ]j ]j1 2 1 2

These expressions for the strain rates incorporate met-
ric terms since they contain derivatives of the scale
factors.

The strain rates may be written out as follows,

1 ]u 1 ]y 1 ]h 1 ]h1 2D 5 1 2 u 1 y , (17)S [ ] [ ]h ]j h ]j h h ]j h h ]j2 2 1 1 1 2 2 1 2 1

1 ]u 1 ]y 1 ]h 1 ]h2 1D 5 2 2 u 2 y , (18)T [ ] [ ]h ]j h ]j h h ]j h h ]j1 1 2 2 1 2 1 1 2 2

1 ]u 1 ]y 1 ]h 1 ]h2 1D 5 1 1 u 1 y . (19)D [ ] [ ]h ]j h ]j h h ]j h h ]j1 1 2 2 1 2 1 1 2 2

Observe that the first pair of terms on the right-hand
side is unchanged for a Cartesian grid (constant hi),
while the second pair vanishes. The second pair of terms
therefore represents the metric terms. Observe also that
the first pair of terms vanishes for a uniform velocity
field, while the metric terms do not. Since the strain
rates in the original EVP model vanish for a uniform
velocity field, we conclude that the EVP model did not
contain metric terms. However, the magnitude of the
ratio of the metric terms and the Cartesian strain rates
varies inversely with the ratio of the spatial scales of
variation for the scale factors hi and the velocity. Since
normally the velocity varies on much shorter scales than
the grid, it is usually a good assumption to neglect the
metric terms, as in the original EVP model. This may
not be true in the vicinity of grid singularities, however,
as mentioned earlier.

As a concrete example, consider the case of spherical
coordinates, obtained through the substitution j1 5 u
(longitude), j2 5 f (latitude), h1 5 r cosf, h2 5 r,
assuming that there is no gradient nor any motion in the
vertical (r) direction. For this case the equations become

1 ]y 1 ]u u
D 5 1 1 tanf,S r cosf ]u r ]f r

1 ]u 1 ]y y
D 5 2 2 tanf,T r cosf ]u r ]f r

1 ]u 1 ]y y
D 5 1 2 tanf,D r cosf ]u r ]f r

and the metric terms are u tanf/r and y tanf/r.
The standard approach to deriving the stress diver-

gence in general orthogonal coordinates is by tensor
analysis, which is complex and intimidating. Neverthe-
less, the appropriate results for the quasi-two-dimen-
sional case of interest here may be found in Aris (1962),
for example, and the stress force components may be
expressed as follows:

1 1 ]s 1 ] 2 ]1 2 2F 5 1 (h s ) 1 (h s ) ,1 2 2 1 122 2[ ]2 h ]j h h ]j h h ]j1 1 1 2 1 1 2 2

(20)

1 1 ]s 1 ] 2 ]1 2 2F 5 2 (h s ) 1 (h s ) .2 1 2 2 122 2[ ]2 h ]j h h ]j h h ]j2 2 1 2 2 1 2 1

(21)
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These expressions correspond to the Cartesian forms
(11) and (12) but now they contain metric terms since
they involve derivatives of the scale factors. These are
rather complicated expressions. Attempts to discretize
them generally fail to guarantee that the discretization
is dissipative; that is, that it is consistent with the dis-
crete version of (13). However, we can guarantee this,
and also the absence of computational modes, by fol-
lowing the variational methodology of Hunke and Du-
kowicz (1997) and Dukowicz and Baumgardner (2002).

We observe that the total dissipation rate D is a
scalar quantity that is unchanged in any coordinate
system. Therefore, by manipulating D we will be able
to extract the correct force components in any coor-
dinate system, including the appropriate metric terms.
We will illustrate the procedure in the continuous case
first, to use later as a guide for our derivation of the
discretization.

Integrating the dissipation rate by parts,

1 1 ] ] 1 h ] u h ] y h ] u h ] y2 1 1 2D 5 s (h u) 1 (h y) 1 s 2 1 s 1 h h dj dj1 2 1 2 12 1 2 1 2E5 1 2 1 2 1 2 1 2 1 2 6[ ] [ ] [ ]2 h h ]j ]j 2 h ]j h h ]j h h ]j h h ]j h1 2 1 2 1 1 2 2 2 1 2 2 1 1 1 2

(22)

1 1 ]s 1 ] 2 ] 1 ]s 1 ] 2 ]1 12 2 2 25 2 u 1 (h s ) 1 (h s ) 1 y 2 (h s ) 1 (h s ) h h dj dj2 2 1 12 1 2 2 12 1 2 1 2E 2 2 2 25 6[ ] [ ]2 h ]j h h ]j h h ]j h ]j h h ]j h h ]j1 1 1 2 1 1 2 2 2 2 1 2 2 1 2 1

1 1
1 u h (s 1 s ) 1 h s 1 y h (s 2 s ) 1 h s dSR 2 1 2 1 12 1 1 2 2 12[ ] [ ]2 2

5 2 (uF 1 yF ) dA 1 boundary terms,E 1 2 (23)

where F1 and F2 are the components of the stress di-
vergence as given by (20) and (21), respectively. This,
therefore, is an alternative method of obtaining the stress
force components, which now are explicitly related to
the dissipation rate.

Note that if the domain is surrounded by land or if
the ice pack is completely contained within the domain,
so that u 5 0 on the boundaries, then the boundary
terms are zero. However, if the boundary is open or if
periodic boundary conditions are used, as on a global,
topologically cylindrical grid, then these boundary con-
ditions can be nonzero and they must be accounted for.
The discretization method described later accounts for
them implicitly.

Equation 23 suggests the following variational com-
putation to obtain stress force components from the dis-
sipation:

1 dD 1 dD
F 5 2 , F 5 2 ,1 2dA du dA dy

where the variation is performed assuming that the stress
components are not functions of velocity. This may now
be used directly to obtain a discretization, given a dis-
crete expression for D. Note that we only need a correct
curvilinear expression for the integrand of (13), that is,
(1/2)s1DD 1 (1/2)s2DT 1 s12DS, including, in partic-
ular, the metric terms appearing in the strain rates DD,
DT, and DS.

3. Discrete formulations

A discrete formulation is derived by expanding the
velocity and stress components in (22) in terms of basis
functions. For example, the u component of velocity in
grid cell k may be expressed as

u (j , j ) 5 u c (j , j ) (24)Ok 1 2 ik ik 1 2
i

where uik is the discrete velocity associated with vertex
i, and cik are the associated basis functions, and similarly
for the stress components. Substituting (24) into (22)
from all cells k, integrating, and collecting all terms
associated with vertex velocities, we obtain the vertex
forces corresponding to (20) and (21), as described in
more detail later.

Previous discretizations of the EVP model used linear
basis functions for the velocities (Hunke and Dukowicz
1997; Hunke 2001). The original discretization method
employed four subtriangles within each grid cell, with
each triangle having one leg along a cell edge and the
four triangles meeting in the center of the cell (see Fig.
1 in Hunke and Dukowicz 1997). The internal ice stress
was assumed constant within each triangle, and the
strain rates were computed using lengths associated with
that triangle. Thus, there were four different values for
the strain rates and the internal stress within each grid
cell, effectively mitigating the ‘‘checkerboard’’ solution
on the B-grid. In this manner, the nonuniformity of the
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grid was partially incorporated into the discretization,
but, since the strain rates vanish for a constant velocity
field, the metric terms associated with the strain rates
were not included.

Although the original formulation performed well
when compared with the VP model in realistic simu-
lations (Hunke and Zhang 1999), the ice internal stress
exhibited undesirable behavior by not converging to the
elliptical yield surface on which it is defined. A new
numerical formulation to address this issue altered the
original discretization to maintain efficiency while ob-
taining a more accurate solution of the nonlinear equa-
tions (Hunke 2001). In the second formulation, four
triangles—each containing constant strain rates and in-
ternal stress—again tile the grid cell, but this time each
triangle covers half the cell and they overlap one another
in pairs: (a) northeast–southwest and (b) northwest–
southeast. In order for the strain rate and stress values
to be consistent, sums over the triangles in case a must
equal sums over the case b triangles, and this is only
possible if the grid cell center lengths are used when
discretizing derivatives. Thus, while this discretization
still incorporates varying grid cell sizes over the mesh,
it does not include varying grid lengths over each cell
as did the original formulation. Metric terms again were
not included.

The second formulation features other desirable prop-
erties, including a new definition of the elastic parameter
E that allows elastic waves to damp out more quickly
and ensures that the internal stresses converge to the
elliptical yield surface appropriately (Hunke 2001). The
changes described here still incorporate these features,
and for this reason we will focus the comparison studies
described later on the second formulation instead of the
original. We will refer to the second formulation as the
Cartesian discretization because the strain rates do not
contain metric terms.

The present formulation, hereafter referred to as the
curvilinear discretization, uses approximations for the
velocity and the internal stress that vary bilinearly over
each grid cell. That is, for the velocity components,

ne nwu(j , j ) 5 u j j 1 u (1 2 j )j1 2 1 2 1 2

sw se1 u (1 2 j )(1 2 j ) 1 u j (1 2 j ),1 2 1 2

ne nwy(j , j ) 5 y j j 1 y (1 2 j )j1 2 1 2 1 2

sw se1 y (1 2 j )(1 2 j ) 1 y j (1 2 j ),1 2 1 2

where j1 , j 2 ∈ [0, 1]. Similar relations hold for the
internal ice stress tensor, with one important differ-
ence. Because this model is discretized for a B-grid,
on which the velocity components for cell (i, j) reside
at the northeast corner, we must have 5 , forne nwu uij i11j

example (i, j now represent grid indices); that is, ve-
locity is continuous across cell edges. The internal
ice stress, on the other hand, is associated with ve-
locity gradients (through strain rates) that are discon-

tinuous across cell edges, and therefore we maintain
four corner values for stress in each cell throughout
the integration.

This may seem peculiar in view of the well-known
condition requiring continuity of stress across boundaries.
Such a condition is required to prevent infinite acceler-
ations at a boundary. However, as this is a discrete model,
the momentum equation is only satisfied in a mean sense
over a finite volume and not at a cell boundary. Fur-
thermore, in this model there are no internal material
discontinuities since ice boundaries are determined by
the ice concentration, which varies continuously. The sit-
uation is similar in the previous discretizations of the
EVP model in that there is no requirement for the con-
tinuity of stress across cell boundaries.

All three of the discretizations are formally second-
order accurate. The new discretization method, in which
stresses and strain rates are bilinear across each grid
cell, contains a more complete representation of velocity
and stress, and therefore should be more accurate. Du-
kowicz and Baumgardner (2002) show that the analo-
gous operator in their case is more isotropic although
of the same formal order of accuracy. As was true for
the previous discretizations, the checkerboard solution
is not a problem in the new formulation; technically,
the model is not discretized on a B-grid because we do
not have a single value for the internal stress residing
at the center of each grid cell.

a. Strain rates

Assume that u is bilinear in a unit grid cell. Also,
because the grids we use are continuously differentiable
and relatively smooth, it is a good assumption that h1

5 1, h2 5 2, the midcell grid lengths formed byh h
averaging the two outside edge lengths, and that ]h1/
]j2 5 D2h1, ]h2/]j1 5 D1h2, which are simple differ-
ences in the grid edge lengths. Then

h ] u2 1 2h ]j h1 1 2

1 ]u ]h25 h 2 u21 2h h ]j ]j1 2 1 1

1
ne nw sw seø {h [u j 2 u j 2 u (1 2 j ) 1 u (1 2 j )]2 2 2 2 2h h1 2

ne nw2 D h [u j j 1 u (1 2 j )j1 2 1 2 1 2

sw1 u (1 2 j )(1 2 j )1 2

se1 u j (1 2 j )]}.1 2

Similarly,
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h ] y1 1 2h ]j h2 2 1

1
ne nw sw seø {h [y j 2 y j 2 y (1 2 j ) 1 y (1 2 j )]1 2 2 2 2h h1 2

ne nw2 D h [y j j 1 y (1 2 j )j2 1 1 2 1 2

sw1 y (1 2 j )(1 2 j )1 2

se1 y j (1 2 j )]}.1 2

We will need the strain rates in each of the four corners
of the grid cell. For the northeast corner, (j1, j2) 5 (1,
1); for the southeast corner, (j1, j2) 5 (1, 0), and so
on. Thus, incorporating the above approximations into
equation (15),

1
ne ne nw ne ne seD 5 [h (u 2 u ) 2 D h u 2 h (y 2 y )T 2 1 2 1h h1 2

ne1 D h y ].2 1

Discretizations for the other strain rates at each of the
four cell corners are found in a similar manner. These
are listed in appendix B.

b. Stress divergence

Consider each term in (13) in turn. As illustrated in
section 2a, the contribution of the s1 term to F1 is given
by the coefficients of u at a given velocity node in the
discretized form of the integral 1/2 # s1DD dA. We have,
from (13) and (16),

1 11 ]u ]h2s h 1 u dj djE E 1 2 1 21 22 ]j ]j1 10 0

1 11 ]u
5 h s dj djE E 2 1 1 21 22 ]j10 0

1 11 ]h21 us dj dj .E E 1 1 21 22 ]j10 0

Substituting bilinear forms for u and s1, the first term
becomes

h 1 12 nw ne nw se swu 2 (s 1 s ) 2 (s 1 s )1 1 1 15 [ ]4 3 6

1 1
ne ne nw se sw1 u (s 1 s ) 1 (s 1 s )1 1 1 1[ ]3 6

1 1
sw se sw ne nw1 u 2 (s 1 s ) 2 (s 1 s )1 1 1 1[ ]3 6

1 1
se se sw ne nw1 u (s 1 s ) 1 (s 1 s ) .1 1 1 1 6[ ]3 6

The second (metric) term becomes

D h 1 1 11 2 nw nw sw ne seu s 1 (s 1 s ) 1 s1 1 1 15 [ ]2 9 18 36

1 1 1
ne ne nw se sw1 u s 1 (s 1 s ) 1 s1 1 1 1[ ]9 18 36

1 1 1
sw sw nw se ne1 u s 1 (s 1 s ) 1 s1 1 1 1[ ]9 18 36

1 1 1
se sw ne sw nw1 u s 1 (s 1 s ) 1 s .1 1 1 1 6[ ]9 18 36

The sum of the first and second terms, divided by the
cell area, gives the contribution from s1 to the stress
term in the momentum equation for u over the cell (i,
j). Since the velocity for cell (i, j) is located in the
northeast corner, the total contribution to the u momen-
tum at this corner consists of the contributions
(summed) from the northeast corner of cell (i, j), the
southeast corner of cell (i, j 1 1), the northwest corner
of cell (i 1 1, j), and the southwest corner of cell (i 1
1, j 1 1). We change sign as indicated in (23) and list
the complete discretization in appendix C.

As noted in section 2b, the boundary terms associ-
ated with integrating over each cell area in (23) are
accounted for in this discretization. In the interior of
the domain (that is, away from the mesh edges), the
boundary terms cancel with those of neighboring grid
cells. We employ an extra set of ‘‘ghost cells’’ sur-
rounding the physical domain to enforce periodic
boundary conditions along the j 2 axis; the northern
and southern boundaries both lie in land masses. On
land boundaries the ice velocity is zero and therefore
the boundary terms are zero.

4. Simulation results

We begin by running the full Los Alamos sea ice
model (CICE) with the Cartesian and curvilinear EVP
discretizations for 14 yr each, from specified fields for
the ice thickness and concentration: the ice area fraction
is near unity throughout the Arctic, decreasing to zero
at the climatological ice edge, and the area-weighted-
average ice thickness is near 2 m. We use a parame-
terization for the ice strength P following Rothrock
(1975), detailed in appendix D. CICE includes the en-
ergy-conserving ice thermodynamics model of Bitz and
Lipscomb (1999) with four ice layers and one layer of
snow, the linear remapping ice thickness distribution
scheme of Lipscomb (2001), an ice ridging scheme fol-
lowing Flato and Hibler (1995) and Thorndike et al.
(1975), and the second-order, multidimensional, positive
definite advection transport algorithm (MPDATA) of
Smolarkiewicz (1984). CICE also includes a thermo-
dynamics-only, slab mixed layer model for the upper
ocean whose sea surface temperature (SST) evolves de-
pending on atmospheric fluxes passing through open
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FIG. 2. (a) Ice concentration and (b) ice thickness on 1 Jan, after a 14-yr CICE integration using the curvilinear EVP discretization.
Contour intervals are (a) [0.1, 0.9] and (b) 0.5 m. Regions with positive values are shaded.

FIG. 3. Metric term coefficients (a) D1h2/ 1 2, (b) D2h1/ 1 2 (1027 m21). Contour intervals are (a) 0.25 3 1027 m21 and (b) 2 3 1027h h h h
m21; contour lines along the coasts outline the land mask used in the simulations. A lat–lon grid is included in (b) for reference.

water and leads in the ice cover, solar penetration
through the ice, and heat fluxes associated with melting
and freezing of ice (Hunke and Ackley 2001). Addi-
tional information about the CICE model is given in
Hunke and Lipscomb (2001).

Wind stress is computed using bulk formulas with
stability and quadratic dependence on the wind speed,
following Bryan et al. (1996), with an ice surface
roughness length of 5 3 1024 m. Ocean stress is com-
puted as in Hibler (1979) and Hunke and Dukowicz
(1997), but only includes a contribution from the ice

motion, since the ocean currents are set to zero. The
Coriolis parameter is latitude (f) dependent, f 5
2(7.292 3 1025 s21) sinf, and we integrate the model
on the global displaced pole grids shown in Fig. 1. The
EVP model parameters are defined as in Hunke (2001);
E 5 z/T, where T 5 1296s is the damping timescale
for elastic waves, and the EVP dynamics model is sub-
cycled with a time step of 30 s under the forcing time
step of 1 hr.

The model was run using a climatological dataset
formed from 4 yr (1985–88) of bulk forcing data pro-
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FIG. 4. Here, (a) u and (b) y velocity components averaged Jan–Mar, for the curvilinear simulation. Contour intervals are 0.02 m s 21;
regions with positive values are shaded and negative contours are dotted.

FIG. 5. Here, (a) = ·u and (b) (= ·s)2 averaged Jan–Mar, for the curvilinear simulation on the Gx3 mesh. Contour intervals are (a) 1% day21

and (b) 20.025, 20.015, 20.005, 0, 0.005, 0.015, 0.025 N m22. Regions with positive values are shaded and negative contours are dotted.

vided by the National Center for Atmospheric Research,
interpolated to the displaced pole grids. These data, de-
scribed in Large et al. (1997), include 6-hourly, T62
resolution, 10-m data for air temperature, air density,
specific humidity, and wind velocity from the National
Centers for Environmental Prediction (NCEP) reanal-
yses, International Satellite Cloud Climatology Project
(ISCCP) monthly downward shortwave radiation flux
and cloud fraction, and blended monthly mean precip-
itation fields (Spencer 1993). The ocean freezing tem-

perature was determined from an annual mean salinity
climatology (Levitus 1982), and a sea surface temper-
ature climatology for January (Shea et al. 1990) was
used to initialize the mixed layer model.

By the end of the 14-yr integrations, the annual
cycle in the model simulations is in quasi equilibrium
from one year to the next. We compare the ice state
at the end of these two runs in section 4d, which
highlights feedback effects when the ice strength
varies in time. First, to clearly understand the effect
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FIG. 6. Metric term contributions to (a) = ·u and (b) (= ·s)2 averaged Jan–Mar. Contour intervals are (a) 0.1% day21 and (b) 0.005 N
m22. Regions with positive values are shaded and negative contours are dotted.

FIG. 7. Difference in (a) = ·u and (b) (= ·s)2 averaged Jan–Mar, between the two simulations (Cartesian–curvilinear). Contour intervals
are (a) 0.15% day21 and (b) 0.0015 N m22. Regions with positive values are shaded and negative contours are dotted.

of including the metric terms, we maintain ice
strength P and mass m constant in time, so that feed-
backs associated with time-varying ice thickness and
concentration fields do not complicate the analysis.
That is, we initialize P and m using the final ice con-
centration and thickness fields from the curvilinear
spinup run, and then compare dynamics-only simu-
lation results using the Cartesian and curvilinear dis-
cretizations on the coarse (Gx3) and fine (Gx1) mesh-
es. The initial ice concentration and thickness fields

are illustrated in Fig. 2; initial ice velocity and internal
stress are zero unless stated otherwise.

Although the dynamics-only simulations discussed later
included both polar regions, we will focus attention on the
Northern Hemisphere winter. As noted above, the metric
terms are less important in the Southern Hemisphere be-
cause the Antarctic land mask extends outward from the
southern pole farther than does Greenland in the north.
We concentrate on the winter months because 1) without
considering feedback effects, the ice internal stress is not
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FIG. 8. Difference in (a) u and (b) y averaged Jan–Mar, between the two simulations (Cartesian–curvilinear). Contour intervals are 0.003
m s21; regions with positive values are shaded and negative contours are dotted.

FIG. 9. Here, (a) = ·u and (b) (= ·s)2 averaged Jan–Mar, for the curvilinear simulation on the Gx1 mesh. Contour intervals are (a) 1%
day21 and (b) 20.025, 20.015, 20.005, 0, 0.005, 0.015, 0.025 N m22. Regions with positive values are shaded and negative contours are
dotted.

important in the summer months, when the ice is thinner
and less compact; and 2) our nonevolving ice strength
field is appropriate only for winter.

a. Coarse grid

Notice in Eqs. (17)–(19) that the metric terms are
characterized by only two coefficients, namely,

1 ]h 1 ]h1 2and .
h h ]j h h ]j1 2 2 1 2 1

The numerical approximations, D1h2/ 1 2 and D2h1/h h
1 2, are shown in Fig. 3. We associate the subscripth h

‘‘1’’ with lines of constant latitude in the Southern
Hemisphere and the subscript ‘‘2’’ with lines of constant
longitude, extending the association to the Northern
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FIG. 10. Total global kinetic energy and divergence ( | DD | ),
summed over both polar regions. Only the ‘‘tail’’ is plotted for better
resolution of the differences.

FIG. 11. Difference in (a) = ·u and (b) (= ·s)2 averaged Jul–Sep, between the two simulations (Cartesian–curvilinear) with time-varying
ice strength and feedback effects. Contour intervals are (a) 0.15% day21 and (b) 0.0005 N m22. Regions with positive values are shaded
and negative contours are dotted.

Hemisphere’s more general mesh. Due to the high cur-
vature of the grid near Greenland, the coefficients ap-
proximating

1 ]h1

h h ]j1 2 2

(Fig. 3b) are an order of magnitude larger than those
approximating

1 ]h2

h h ]j1 2 1

(Fig. 3a), and therefore we expect to see larger differ-
ences in variables associated with the j2 (y) component
of the momentum balance.

As a baseline for comparison purposes, the ice ve-
locity components, divergence, and the j2 component
of internal stress divergence from the curvilinear sim-
ulation are shown in Figs. 4 and 5. Figure 6 shows the
metric terms contributing to the ice divergence and j2

component of internal stress divergence, hereafter no-
tated = ·u and (= ·s)2, respectively. (These terms, which
have coefficients given above and illustrated in Fig. 3,
are computed as shown in appendices B and C.) While
the = ·u metric term is an order of magnitude smaller
than = ·u itself, the (= ·s)2 metric term contributes sig-
nificantly to (= ·s)2.

The resulting change in the simulation is illustrated in
Fig. 7, which shows the difference in ¹ · u and (= ·s)2

obtained by subtracting the curvilinear discretization re-
sults from the Cartesian discretization that did not include
metric terms. Note that these differences also reflect chang-
es in the basic discretization method, although we expect
that including the metric terms explicitly has a greater
effect than moving to bilinear approximations for the ve-
locity and internal stress, since both discretizations are
formally second-order accurate for uniform meshes. As
expected, the change in = ·u between the simulations is
about an order of magnitude smaller than = ·u itself, re-
flecting the presence of the metric terms. However, the
change in (= ·s)2 is much smaller than expected, given
the relative magnitude of the metric term.

Scale analysis of the momentum balance provides an
explanation for this result. Appropriate scales for the
variables in the momentum equation are m ; 103 kg
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FIG. 12. Monthly averaged ice divergence, concentration, thick-
ness, and sea surface temperature at the point (78.08N, 54.28E), for
the curvilinear and Cartesian formulations.

m22, f ; 1024 s21, cwrw ; 5 kg m23, u ; 1022 m s21

and, for the seasonal timescale considered here, dt ;
107 s. With these values we have

mu
26 22inertia: ; 10 Nm ,

dt
2 24 22ocean stress: c r u ; 5 3 10 Nm ,w w

23 22Coriolis: mfu ; 10 Nm ,
22 22wind stress: t ; 10 Nm .a

As indicated in Fig. 5, the internal stress term is on the
order of 1022 N m22 through the winter months. Therefore,
because the other terms are all smaller by an order of
magnitude or more, the wind stress and ice internal stress
form the primary balance in the momentum equations for
this timescale. Since the ice internal stress is effectively

constrained to cancel out the wind stress, irrespective of
the metric terms, the metric terms make little difference.
The difference in ice velocity between the runs is generally
less than 0.003 m s21, shown in Fig. 8.

Thus, in spite of being relatively large, the metric
terms may have only a small effect on sea ice simulation
results, especially at the long timescales considered in
climate studies. Without the feedback mechanisms as-
sociated with ice thermodynamics, advection, and ridg-
ing, however, we cannot draw such a conclusion with
confidence. The ice divergence, DD, may play a more
prominent role when sophisticated ice distribution and
ridging models (e.g., Thorndike et al. 1975) are incor-
porated (along with thermodynamics) into a full sea ice
model. Similarly, the position of the ice edge, fixed in
the previous simulation, may be more sensitive to dif-
ferences in the stress divergence. A similar comparison
of simulations with the full sea ice model, feedbacks
included, is explored in section 4d.

b. Fine grid

The metric terms on the Gx1 grid shown in Fig. 1b
are exactly the same as those on the Gx3 grid (Fig. 1a)
because the Gx1 mesh is simply a more highly subdi-
vided version of the Gx3 mesh. That is, the north and
south poles reside in the same place on the sphere. As-
suming that the grids are related by

Gx3 Gx1 Gx3 Gx1h 5 f h , h 5 f h ,1 1 1 2 2 2

where f 1, f 2 . 1 are scaling factors between the grids,
and since length is conserved,

dj dj1 2dx 5 h dj 5 f h , dy 5 h dj 5 f h .1 1 1 1 2 2 2 2f f1 2

we deduce that
Gx3 Gx1 Gx3 Gx1f j 5 j , f j 5 j .1 1 1 2 2 1

Thus, for example,
Gx3 Gx1 Gx1 1 ]h 1 ]( f h ) 1 ]h1 1 1 1 5 5 .[ ] [ ]h h ]j ( f h )( f h ) h h ]j 1 2 2 1 1 2 2 1 2 2j2] 1 2f2 

As a result, metric terms do not play a strong role as
resolution is changed. To the extent that spatial features
are resolved in both calculations, the simulations should
be similar. This is borne out by comparing Figs. 5 and
9. For these simulations, we interpolated the forcing data
to the Gx1 mesh from the Gx3 mesh, rather than from
the original, in order to filter higher spatial frequency
modes and obtain a more direct comparison of discret-
ization effects.

c. Dissipation

The total rate of internal work, D, provides another
means of assessing the effect of the metric terms. Equa-
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FIG. 13. Difference between the two simulations (Cartesian–curvilinear) in (a) ice concentration and (b) ice thickness on 1 Jan, after 14
yr of integration. Contour intervals are (a) 0.01 and (b) 0.2 m. Regions with positive values are shaded and negative contours are dotted.

tion (13) indicates that the dissipation rate depends on
two factors, D 2 DD and the ice strength P, with longer
timescales when P is small. For this comparison we fix
P and m with 90% concentration of 1-m-thick ice. With
these initial ice conditions and an initial velocity field
given by that at the end of the 14-yr curvilinear spinup,
we run the model with the two discretization schemes
under zero forcing conditions on the Gx3 grid, taking
24 1-h time steps.

Figure 10a illustrates the ‘‘spin-down’’ of total kinetic
energy, 1/2 S m | u | 2 (summed over the entire globe),
and Fig. 10b shows S | DD | , where the divergence mag-
nitude is used to avoid cancellations in the sum. The
residual global kinetic energy is about 7 orders of mag-
nitude smaller than the initial kinetic energy in the cur-
vilinear case, and only 6 orders of magnitude smaller in
the Cartesian case. At the same time, the curvilinear cal-
culation has a more quiescent divergence field and cor-
respondingly, a 1% day21 lower residual total divergence
than the Cartesian calculation. These results are related.
As is evident from (13), dissipation is primarily associ-
ated with the DS and DT components of the strain rate,
and not with divergence DD. Since the curvilinear cal-
culation has a lower level of residual divergence than the
Cartesian case (Fig. 10b), it evidently had more shear
and deformation, resulting in more dissipation and a low-
er level of kinetic energy, consistent with Fig. 10a. That
is, the presence of metric terms in the curvilinear cal-
culation [Eqs. (17)–(19)] raises the level of DS and DT

in the strain rate, at the expense of DD, resulting in more
energy dissipation in this particular case.

d. Feedback effects
To assess the effects of changing ice thickness and

concentration during the simulation, we compare the

final year of the spinup runs using the new curvilinear
dynamics discretization and the older, Cartesian dis-
cretization. Because the distribution of ice does not
change much over the first 3 months in either simulation,
the differences in = ·u and (= ·s)2 are quite similar to
those in Fig. 7 and are not shown. Larger differences
occur later in the year, when melting and freezing rates
may be affected by differing amounts of opening and
closing within the ice pack.

In warmer months lower ice concentrations con-
tribute to weak ice strength; internal stresses are small
and the ice tends to drift freely. This is illustrated in
Fig. 11, which shows averaged July–September val-
ues for = · u and (= · s) 2 . Although the internal stress
forces are quite similar between the two runs (Fig.
11b), the ice divergence shown in Fig. 11a exhibits
pronounced differences, 0.15% day 21 or more in the
central Arctic. As the ice diverges, leads in the pack
ice enlarge, allowing additional fluxes of radiation,
heat, and moisture to pass between the atmosphere
and ocean. Further heating of the mixed-layer can lead
to additional ice melt in the summer, resulting in thin-
ner ice and even more open water. This is evident in
Fig. 12 for a point just west of Novaya Zemlya
(78.08N, 54.28E). Thinner ice in the curvilinear sim-
ulation allows more ridging through ice convergence
during June and subsequently a larger decrease in ice
concentration than is evident in the Cartesian simu-
lation. Enhanced by additional heating of the mixed
layer, the increase in open water area accelerates until
the ice thickness drops to zero, resulting in sea surface
temperatures warmer in the curvilinear simulation by
as much as 18C. Although not accounted for in these
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FIG. 14. Normalized principal stress states for the (a), (b) Cartesian and (c), (d) curvilinear spinup simulations on
(a), (c) 1 Aug of the 14th integration year, and (b), (d) 1 Jan of year 15.

simulations, such a change in SST can affect atmo-
spheric temperature and circulation significantly.

The example shown in Fig. 12 is an extreme case,
however, and is not representative of differences over
most of the Arctic Ocean. Although concentration dif-
ferences may reach 20% or more near the ice edge or
near coastlines, as in Fig. 12, ice concentrations typi-
cally differ by no more than a few percent in the central
Arctic over the year, and by the end of December they
are again quite close, near 100%, as shown in Fig. 13a.
The ice thickness field represents a time-integrated mea-
sure of the differences between the two simulations, and
is shown in Fig. 13b. While thickness differences are
generally less than about 0.2 m over much of the Arctic
basin, these simulations indicate that differences can be
greater than 0.2 m over significant regional areas and
reach several tens of cm near coasts.

e. Principal stress states

As a final note to this study, we demonstrate that the
principal stress states produced with both discretizations
obey the elliptical yield criterion (Fig. 14). Normalized
by P, the principal stresses are given by

1
2 2s 5 (s 1 Ïs 1 4s ),I 1 2 122P

1
2 2s 5 (s 2 Ïs 1 4s ).II 1 2 122P

In summer (Figs. 14a,c), the ice is loosely packed, ice
strength is low, and the ice is primarily in a state of plastic
yielding. In winter (Figs. 14b,d), the ice is much more
compact and in cells where the ice strength is large, the
ice flows viscously, indicated by stresses lying inside the
ellipse. Both discretizations capture this behavior, in con-
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APPENDIX A

Table of Symbols Used in the Text

Symbol Definition Units

ji

t
hi

E
P
m

ith spatial coordinate
Temporal coordinate
Scale factor in the ji direction
Elastic parameter
Ice pressure (strength)
Mass per unit area

s
m
N m21

N m21

kg m22

z

h

e
D

D
DD

Bulk viscosity
Shear viscosity
Ratio of ellipse major and minor axes
Function of strain rates
Rate of internal work
Divergence, 11 1 22ė ė

kg s21

kg s21

2
s21

N m s21

s21

DS

DT

Fi

t i

ijė

sij

Shearing strain rate, 2 12ė

Tension strain rate, 11 2 22ė ė

ith component of stress divergence
ith componenet of surface stress
ij component of the strain rate tensor
ij component of the stress tensor

s21

s21

N m22

N m22

s21

N m21

s1

s2

u 5 (u, v)

s11 1 s22

s11 2 s22

Ice velocity

N m21

N m21

m s21

trast with the original EVP formulation (Hunke and Zhang
1999). For an extended discussion of principal stress states
in the EVP model, see Hunke (2001).

5. Summary

In this paper we have demonstrated a variational
method for deriving consistent operators for the ice dy-
namics that incorporate the metric terms while preserv-
ing the dissipative nature of the viscous–plastic ice rhe-
ology. In addition, within this approach we have dis-
cretized these operators using bilinear basis functions
for the velocity and internal stress fields. This leads to
a better behaved numerical discretization than in pre-
vious formulations, which approximated the velocity
and internal stress components with linear and piecewise
constant functions, respectively, over a grid cell.

Winter simulations with constant ice thickness and
concentration indicate a remarkable insensitivity to the
presence of metric terms. Although the internal stress
metric terms may be large compared with the internal
stress itself, the internal stress forces and therefore the
ice motion are determined primarily by the wind stress,
given the fixed ice strength; differences in the ice speed
between the previous discretization and the present one
are generally less than 0.005 m s21. Since grid variation
is well resolved the metric terms are identical on a coarse
grid as on a finer grid with the same mesh geometry, and
the simulation results are therefore also the same.

However, grid curvature effects can be significant. In
summer, when the ice floes are only loosely packed, the
internal stress of the pack ice is near zero but divergence
and convergence of the ice can be brisk. Deformation
of the ice affects its thickness and concentration through
ridging and thermodynamic growth and melt, which
then alter the ice strength and its ability to deform fur-
ther. Moreover, exposing a larger area of open water to
the atmosphere allows increased flux exchange between
the ocean and the atmosphere, ultimately resulting in
less ice in summer, when the ocean warms due to solar
heating, or more ice in winter, when sea surface cooling
causes new ice to freeze. Under these conditions, in-
cluding the metric terms results in generally thinner ice
in the Arctic basin after 14 yr of integration. Therefore,
we conclude that metric term effects are important when
coupled with this deformation-strength feedback pro-
cess, and these terms must be included for model dis-
cretizations on nonuniform grids.
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APPENDIX B

Strain Rate Discretizations

a. Divergence

1
ne ne nw ne ne seD 5 [h (u 2 u ) 1 D h u 1 h (y 2 y )D 2 1 2 1h h1 2

ne1 D h y ]2 1

1
nw ne nw nw nw swD 5 [h (u 2 u ) 1 D h u 1 h (y 2 y )D 2 1 2 1h h1 2

nw1 D h y ]2 1

1
se se sw se ne seD 5 [h (u 2 u ) 1 D h u 1 h (y 2 y )D 2 1 2 1h h1 2

se1 D h y ]2 1

1
sw se sw sw nw swD 5 [h (u 2 u ) 1 D h u 1 h (y 2 y )D 2 1 2 1h h1 2

sw1 D h y ]2 1
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b. Tension

1
ne ne nw ne ne seD 5 [h (u 2 u ) 2 D h u 2 h (y 2 y )T 2 1 2 1h h1 2

ne1 D h y ]2 1

1
nw ne nw nw nw swD 5 [h (u 2 u ) 2 D h u 2 h (y 2 y )T 2 1 2 1h h1 2

nw1 D h y ]2 1

1
se se sw se ne seD 5 [h (u 2 u ) 2 D h u 2 h (y 2 y )T 2 1 2 1h h1 2

se1 D h y ]2 1

1
sw se sw sw nw swD 5 [h (u 2 u ) 2 D h u 2 h (y 2 y )T 2 1 2 1h h1 2

sw1 D h y ]2 1

c. Shearing

1
ne ne se ne ne nwD 5 [h (u 2 u ) 2 D h u 1 h (y 2 y )S 1 2 1 2h h1 2

ne2 D h y ]1 2

1
nw nw sw nw ne nwD 5 [h (u 2 u ) 2 D h u 1 h (y 2 y )S 1 2 1 2h h1 2

nw2 D h y ]1 2

1
se ne se se se swD 5 [h (u 2 u ) 2 D h u 1 h (y 2 y )S 1 2 1 2h h1 2

se2 D h y ]1 2

1
sw nw sw sw se swD 5 [h (u 2 u ) 2 D h u 1 h (y 2 y )S 1 2 1 2h h1 2

sw2 D h y ]1 2

APPENDIX C

Discretizations for the Divergence of the
Stress Tensor

a. Contribution of the s1 term to F1

1 h 1 12 ne nw se sw2 (s 1 s ) 1 (s 1 s )1 1 1 15 1 2[h h 4 3 61 2

D h 1 1 11 2 ne nw se sw2 s 1 (s 1 s ) 1 s1 1 1 11 2]2 9 18 36 ij

h 1 12 ne nw se sw1 (s 1 s ) 1 (s 1 s )1 1 1 11 2[ 4 3 6

D h 1 1 11 2 nw sw ne se2 s 1 (s 1 s ) 1 s1 1 1 11 2]2 9 18 36 i11 j

h 1 12 se sw ne nw1 2 (s 1 s ) 1 (s 1 s )1 1 1 11 2[ 4 3 6

D h 1 1 11 2 se ne sw nw2 s 1 (s 1 s ) 1 s1 1 1 11 2]2 9 18 36 ij11

h 1 12 se sw ne nw1 (s 1 s ) 1 (s 1 s )1 1 1 11 2[ 4 3 6
D h 1 1 11 2 sw nw se ne2 s 1 (s 1 s ) 1 s1 1 1 11 2 6]2 9 18 36 i11j11

b. Contribution of the s1 term to F2

1 h 1 11 ne se nw sw2 (s 1 s ) 1 (s 1 s )1 1 1 15 1 2[h h 4 3 61 2

D h 1 1 12 1 ne nw se sw2 s 1 (s 1 s ) 1 s1 1 1 11 2]2 9 18 36 ij

h 1 11 nw sw ne se1 2 (s 1 s ) 1 (s 1 s )1 1 1 11 2[ 4 3 6

D h 1 1 12 1 nw sw ne se2 s 1 (s 1 s ) 1 s1 1 1 11 2]2 9 18 36 i11 j

h 1 11 ne se nw sw1 (s 1 s ) 1 (s 1 s )1 1 1 11 2[ 4 3 6

D h 1 1 12 1 sw ne sw nw2 s 1 (s 1 s ) 1 s1 1 1 11 2]2 9 18 36 ij11

h 1 11 nw sw ne se1 (s 1 s ) 1 (s 1 s )1 1 1 11 2[ 4 3 6
D h 1 1 12 1 sw nw se ne2 s 1 (s 1 s ) 1 s1 1 1 11 2 6]2 9 18 36 i11j11
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c. Contribution of the s2 term to F1

1 h 1 12 ne nw se sw2 (s 1 s ) 1 (s 1 s )2 2 2 25 1 2[h h 4 3 61 2

D h 1 1 11 2 ne nw se sw1 s 1 (s 1 s ) 1 s2 2 2 21 2]2 9 18 36 ij

h 1 12 ne nw se sw1 (s 1 s ) 1 (s 1 s )2 2 2 21 2[ 4 3 6

D h 1 1 11 2 nw sw ne se1 s 1 (s 1 s ) 1 s2 2 2 21 2]2 9 18 36 i11 j

h 1 12 se sw ne nw1 2 (s 1 s ) 1 (s 1 s )2 2 2 21 2[ 4 3 6

D h 1 1 11 2 se ne sw nw1 s 1 (s 1 s ) 1 s2 2 2 21 2]2 9 18 36 ij11

h 1 12 se sw ne nw1 (s 1 s ) 1 (s 1 s )2 2 2 21 2[ 4 3 6

D h 1 1 11 2 sw nw se ne1 s 1 (s 1 s ) 1 s2 2 2 21 2 6]2 9 18 36 i11j11

d. Contribution of the s2 term to F2

1 h 1 11 ne se nw sw(s 1 s ) 1 (s 1 s )2 2 2 25 1 2[h h 4 3 61 2

D h 1 1 12 1 ne nw se sw2 s 1 (s 1 s ) 1 s2 2 2 21 2]2 9 18 36 ij

h 1 11 nw sw ne se1 (s 1 s ) 1 (s 1 s )2 2 2 21 2[ 4 3 6

D h 1 1 12 1 nw sw ne se2 s 1 (s 1 s ) 1 s2 2 2 21 2]2 9 18 36 i11 j

h 1 11 ne se nw sw1 2 (s 1 s ) 1 (s 1 s )2 2 2 21 2[ 4 3 6

D h 1 1 12 1 sw ne sw nw2 s 1 (s 1 s ) 1 s2 2 2 21 2]2 9 18 36 ij11

h 1 11 nw sw ne se1 2 (s 1 s ) 1 (s 1 s )2 2 2 21 2[ 4 3 6

D h 1 1 12 1 sw nw se ne2 s 1 (s 1 s ) 1 s2 2 2 21 2 6]2 9 18 36 i11j11

e. Contribution of the s12 term to F1

1 h 1 11 ne se nw sw2 (s 1s ) 1 (s 1 s )12 12 12 125 1 2[h h 2 3 61 2

1 1 1
ne nw se sw1 D h s 1 (s 1 s ) 1 s2 1 12 12 12 121 2]9 18 36 ij

h 1 11 nw sw ne se1 2 (s 1 s ) 1 (s 1 s )12 12 12 121 2[ 2 3 6

1 1 1
nw sw ne se1 D h s 1 (s 1 s ) 1 s2 1 12 12 12 121 2]9 18 36 i11 j

h 1 11 ne se nw sw1 (s 1 s ) 1 (s 1 s )12 12 12 121 2[ 2 3 6

1 1 1
sw ne sw nw1 D h s 1 (s 1 s ) 1 s2 1 12 12 12 121 2]9 18 36 ij11

h 1 11 nw sw ne se1 (s 1 s ) 1 (s 1 s )12 12 12 121 2[ 2 3 6

1 1 1
sw nw se ne1 D h s 1 (s 1 s ) 1 s2 1 12 12 12 121 2 6]9 18 36 i11j11

f. Contribution of the s12 term to F2

1 h 1 12 ne nw se sw2 (s 1 s ) 1 (s 1 s )12 12 12 125 1 2[h h 2 3 61 2

1 1 1
ne nw se sw1 D h s 1 (s 1 s ) 1 s1 2 12 12 12 121 2]9 18 36 ij

h 1 12 ne nw se sw1 (s 1 s ) 1 (s 1 s )12 12 12 121 2[ 2 3 6

1 1 1
nw sw ne se1 D h s 1 (s 1 s ) 1 s1 2 12 12 12 121 2]9 18 36 i11 j

h 1 12 se sw ne nw1 2 (s 1 s ) 1 (s 1 s )12 12 12 121 2[ 2 3 6

1 1 1
se ne sw nw1 D h s 1 (s 1 s ) 1 s1 2 12 12 12 121 2]9 18 36 ij11

h 1 12 se sw ne nw1 (s 1 s ) 1 (s 1 s )12 12 12 121 2[ 2 3 6

1 1 1
sw nw se ne1 D h s 1 (s 1 s ) 1 s1 2 12 12 12 121 2 6]9 18 36 i11j11
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APPENDIX D

Ice Strength Formulation

Following Rothrock (1975), we assume that the
strength P is proportional to the change in ice potential
energy per unit area of compressive deformation.

21NC gr (r 2 r )f i w iP 5 r 1 r (1 2 k )Oo n n[ ]2r n51w

N 3 3k H 2 Hn n n2123 r 2h 1 , (D1)O n n 1 2[ ]3 H 2 Hn51 n n21

where

2hnk 5 .n H 1 Hn21 n

The empirical parameter Cf 5 17 accounts for frictional
energy dissipation (Flato and Hibler 1995); g 5 9.806
m s22 is gravitational acceleration; ri 5 917 kg m23

and rw 5 1026 kg m23 are the densities of ice and sea
water, respectively. The mean thickness of ice in cate-
gory n is denoted hn, and the maximum thickness for
each of our N 5 5 thickness categories is Hn 5 0.6445
m, 1.391 m, 2.470 m, 4.567 m, 9.334 m. The maximum
thickness for category n 5 0, equivalent to the minimum
ice thickness, is 0 m. The ratio of ice area ridging in
category n to the total area of ridging ice is given by


2 G 1 Gn21 n(G 2 G ) 1 2 if G , G*n n21 n1 2G* 2G*

r 5n 2 G 1 G*)n21(G* 2 G ) 1 2 if G , G* # Gn21 n21 n1 2G* 2G*
0 if G* # G . n21

Here, Gn is the fractional area covered by ice in cate-
gories 0 to n, and we take G* 5 0.15. Note that if the
open water area is greater than G*, then Gn21 $ G* for
all ice categories and we set P 5 0.
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